Wilmington Air Quality Study

Emissions Inventory Development and Evaluation

Todd Sax

California Air Resources Board

April 29, 2003

Wilmington

- Identified by MATES-II as one of the most impacted areas of the Los Angeles region
- Located near
 - Freeways
 - Refineries
 - Ports
 - Local Traffic
 - Manufacturing
 - Local Facilities

(source: MATES-II, pg. ES-12)

Wilmington Study Objective

- Develop and evaluate modeling methodology capable of assessing the impact of toxic air contaminants at a fine resolution
- Study Components
 - Local scale inventories
 - Local and regional scale modeling
 - Health risk assessment
 - Limited exposure assessment
 - Model evaluation

Wilmington Neighborhood Assessment - Conceptual Plan

Wilmington Air Quality Study

- Emissions Inventory Plan
 - Three categories
 - Industrial and Commercial Facilities
 - On-Road Emissions
 - Marine Terminals and Related Off-Road
 - Tiered approach: 90744, all others
 - Goal: Develop a robust, spatially resolved, process and stack level modeling inventory
 - Inventory data evaluation
 - Spatial QA/QC
 - Multiple data sources
 - On-site surveys
 - Sensitivity and uncertainty analysis

- Inventory Development Procedure
 - Develop facility list from multiple databases
 - Collect inventories from multiple sources
 - Conduct on-site surveys
 - Verify existing inventories
 - Augment for on-site, off-road and on-road sources
 - Estimate release parameters
 - Compile inventory
 - Choose among data sources for best representation
 - Favor more recent, more complete data sources
 - Assign default locations and stack parameters as necessary
- Defaults
 - Location by GDT Geocoding

Stack parameters

Inventory Data Evaluation

- Why evaluate?
 - Individual errors may affect local scale modeling and risk
 - Determine level of data necessary to support credible local scale risk estimates

Evaluation Goals

- Evaluate inventory databases
 - How credible are primary databases, and how can they be improved?
- Contribution of "Neighborhood" sources
 - Do smaller facilities affect risk? At what resolution?
- Assess uncertainty

Preliminary Results

- Toxics Inventory: 405

 facilities, 1660 release
 points, >14,000 records
- Criteria Inventory: 259 facilities, 761 release points, >7200 records
- Inventory data obtained from 170 facilities by survey

- Preliminary risk-score evaluation
 - Toxicity-weighted emissions
 - Cancer risk: Emissions * Unit Risk Factor * MW Adj * 1700
 - · Chronic risk: ((Emissions/8760) / Reference exposure) * 150

Preliminary Results

- 80% of toxicity-weighted emissions verified or obtained by survey
- 10 facilities account for 70% of toxicity weighted emissions.
- Diesel PM on-site, off-road and onroad emissions are important, and not typically allocated to facilities.

	Percent of Total Inventory Cancer
Pollutant	Score
Diesel PM Hexavalent Chromium	68 12
1,3 Butadiene	6
Benzene	3
Cadmium	3
Sum	92
	Percent of Total Inventory Cancer
Data Source	Score
Surveyed Sources	80
Non-Surveyed Sources	20

Work in Progress

Spatial QA/QC

 Use GIS to help identify potential database errors that may not be caught using standard QA/QC procedures.

Inventory database evaluation

 Compare inventories developed by survey to ARB databases to assess strengths and weaknesses, and develop proposals for database improvements.

Contribution of Neighborhood Sources

 Determine whether facilities not typically reported to inventory databases affect local risks and should be considered in future assessments.

Inventory Uncertainty

- Reporting uncertainty: same facility, different sources should have similar emissions.
- Analysis of gas stations, diesel PM sources.

On-Road Emissions

- Method: Link (Roadway) Based Inventory
 - Travel demand models
 - Roadway network, classified by type
 - Volume and speed on each link
 - EMFAC
 - Fleet characteristics, LA County
 - Develop composite emission factors for default fleet by temperature and relative humidity
 - Temporal profile
 - UC Davis Study generic to Los Angeles
 - ARB speciation factors for toxics

<u>On-Road Emissions</u>

- Inventory Evaluation
 - Qualitative evaluation of assumptions
 - Link-based inventories require different assumptions
 - Spatial resolution makes assumptions more important
 - Vehicle volumes
 - Use vehicle counts to evaluate volumes on specific links
 - Speed, emission factors and other sources
 - Sensitivity analysis
 - Importance of different roadway classifications
 - Evaluate different roadway classifications to determine levels of risk each generate and how inclusion/exclusion would affect model results.

On-Road Emissions

Preliminary Results

- About 2000 links in model domain
- Freeways, ramps and major arterials more spatially accurate than other links.
- Freeways, ramps, and major arterials account for 50% of links, 80% of on-road diesel PM emissions in model domain
- Unclear extent travel demand models should be used for link-based assessment

<u>On-Road Emissions</u>

Work in Progress

- Compile list of assumptions in link-based approach
- Compare predicted traffic volumes to traffic counts
- Sensitivity Analysis
- Comparison of contribution to modeled risk from each roadway classification. Determine which to consider in the future
- Uncertainty analysis: diesel PM sources

Off-Road Emissions

Inventory Development

- Ports of Los Angeles and Long Beach
 - Statewide emissions estimates cannot be directly attributed to ports.
 - We are working with Ports to develop inventories for marine terminals, on-road sources, and related locomotive emissions.

Locomotives

- Working with Rail companies and Ports to develop link and throttle-notch specific inventories
- Not considered: construction
 - Transient, not appropriate for long-term risk assessment

Conclusion

- Emissions inventories have a major impact on local scale modeling results
 - Spatial resolution is important, but achieving spatial resolution introduces new opportunities for error.
- Developing diesel PM inventories for local scale assessment is a concern.
- Completing this study will help us:
 - Refine and improve local scale modeling inventories
 - Focus on most important pollutants and sources
 - Understand model performance
 - · Credibility of neighborhood assessment risk results.

